Semi-flexible dense polymer brushes in flow - simulation & theory

Frank Römer and Dmitry A. Fedosov

Forschungszentrum Jülich GmbH
Theoretical Soft Matter and Biophysics (ICS-2/IAS-2)
Institute of Complex Systems & Institute for Advanced Simulation
Introduction

- theoretical & computational methods
- from meso scale to continuum
- hydrodynamic interactions
Semi-flexible polymers at high density stiff anchored onto a surface:

- glycocalyx brush structure on the endothelial surface layer\(^1\) (EGL)
- periciliary layer of the lung airway\(^2\)
- vestibular\(^3\) & auditory\(^4\) sensory epithelium

Motivation

Modeling blood flow in vessels with explicit EGL:

EGL

RBC

400 nm – 20 nm

8 μm – 2 μm

scaling problem!
→ implicit modeling or coarse graining
Can we predict the properties (e.g. height) of a dense semi-flexible polymer brush in shear flow for a given set of parameters:

- *flexural rigidity* EI,
- *grafting density* σ and
- *shear rate* $\dot{\gamma}$ on top?
Already done?

There is a lot experimental, simulation & theoretical work done on full-flexible polymer brushes (PB), but only a few on semi-flexible PBs.

Semi-flexible polymer brushes in *equilibrium*:

Semi-flexible polymer brushes in *flow*:

Nonlinear Response of Grafted Semiflexible Polymers in Shear Flow

Yong Woon Kim,†,* V. Lobaskin,§ C. Gutsche,‖ F. Kremer,‖ Philip Pincus,‡ and Roland R. Netz§

\[EI \frac{d^2 \theta}{ds^2} = -3\pi \eta \cos \theta(s) \int_s^L u(s) \, ds \]

with:
\[\frac{s^2 u}{dy^2} = 3\pi \sigma \frac{u(y)}{\cos \theta(y)} \]

- no volume-exclusion interaction
- grafting density only influence velocity
- max. grafting density studied \(\sigma = 0.03 \)
- model only works for small deformations

No, it is not done!
Simulations
Dissipative Particle Dynamics (DPD) was introduced by Hoogerbrugge and Koelman in 19925.

Particles in DPD represent clusters of molecules and interact through simple pair-wise forces: \(F_i = \sum_{j \neq i} (F^C_{ij} + F^R_{ij} + F^D_{ij}) \).

DPD system is thermally equilibrated through a thermostat defined by forces: \(F^R_{ij} \) and \(F^D_{ij} \).

The DPD scheme consists of the calculation of the position and velocities of interacting particles over time. The time evolution of positions and velocities are given by: \(dr_i = v_i dt \) and \(dv_i = F_i dt \).

Español and Revenga combined in Smoothed Dissipative Particle Dynamics (SDPD)6 best features of the Smoothed Particle Hydrodynamics (SPH)7 and DPD methods.

- SDPD allows to introduce an arbitrary equation of state:
 - e.g. control compressibility.
- SDPD particles has a well defined size and volume:
 - \textit{consistent scaling} of thermal fluctuations of the fluid,
 - while dynamics of immersed objects is \textit{scale-free}8
- In SDPD transport coefficients (viscosity, thermal conductivity) are a direct input.

The **SDPD ensemble**:

- slit like geometry (2D PBC)
- wall & fluid: SDPD particle
- reflection planes at walls
- Poiseuille flow in x direction:
 $$f_{x,i} = \frac{dP}{dx}/\rho$$
- polymers grafted on a tetragonal lattice with a_{lat}
- friction between fluid & polymer beads

We characterize the system by:

- grafting density: $\sigma = (a_{\text{lat}}/d)^{-2}$
- flexibility: $l_p/L = EI/(k_B T L)$
- rate: $\dot{\gamma} = L^3 \eta \dot{\gamma}/k_B T$
The **Polymer beam** is represented by:

- \(N = 10 + 1 \) tangential bonded beads of diameter \(d \)
- 1\(^{st}\) two beads fixed
- **extensible** worm-like chain model like friction interaction with fluid
- repulsive interaction between beads (WCA\(^a\)) → volume exclusion

\[U(\{r_k\}) = \sum_{i=0}^{N-1} \left[\frac{k_b}{2d} [r_{i,i+1} - d]^2 + \frac{EI}{d} [1 - \cos \Delta \theta] \right] \]

with: \(EI/k_b = d^2/16 \)

We have simulated systems with:

- grafting densities σ from 0.01 to 1,
- and beam elasticities l_p/L of 10 and 100
- at shear rates $\tilde{\gamma}$ between 10^1 and 10^6.

The Reynolds number, referring to the maximum velocity the polymer brush is exposed at the tip and beam elasticity, varies between

$$R_e = \frac{\rho u d}{\eta} = \text{impuls} \left(\frac{\text{convection}}{\text{diffusion}} \right) = 10^{-6} - 10^{-1} \rightarrow \text{Stokes regime}^{10}.$$

Height of brush is calculated from the first moment of the polymer monomer density profile11:

$$h = 2 \frac{\int y \rho(y) dy}{\int \rho(y) dy}$$

Results
comparison of methods

\[
l_p / L = 10, \sigma = 0.01
\]

\[
\frac{h}{L}
\]

\[
\tilde{\gamma}
\]

- LB
- BD
- SDPD Couette flow
- SDPD Poiseuille flow
Results from SDPD simulations

Polymer brush height as a function of shear rate on top of the brush:

![Graph showing polymer brush height as a function of shear rate.](image)
Theory
Theoretical Model

The polymer beam is treated as a cantilever.

- Uniform behavior
- Quasi 2D: no perturbation in z
- Internal coordinates along contour line: $s, \theta(s)$

Euler-Bernoulli beam theory:

$$EI \frac{dr(s)}{ds} \times \frac{d^3 r(s)}{ds^3} = F(s) \times \frac{dr(s)}{ds}$$

$$EI \frac{d^2 \theta(s)}{ds^2} = F_y(s) \sin \theta(s) - F_x(s) \cos \theta(s)$$

- Hydrodynamic drag force: $F^d(s)$
- Volume exclusion force: $F^v(s)$

Boundary conditions:
- $\theta(s)|_{s=0} = 0$ at the grafting surface, and $d\theta/ds|_{s=L} = 0$ at the free end.
The effective shear force acting on the beam at position s:

$$F^d(s) = \int_s^L f^d(s') ds,$$

with the local force density due to hydrodynamic interaction for the x-component

$$f_x^d(s) = f_{\perp}^d(s) \cos \theta(s) + f_{\parallel}^d(s) \sin \theta(s),$$

and the y-component

$$f_y^d(s) = f_{\perp}^d(s) \sin \theta(s) - f_{\parallel}^d(s) \cos \theta(s).$$
Shear force components:
\[f_{\perp}^d(s) = \zeta_{\perp}(s) \eta u_x(s) \cos \theta(s) \quad \text{and} \quad f_{\parallel}^d(s) = \zeta_{\parallel}(s) \eta u_x(s) \sin \theta(s) \]

Friction coefficient from slender body theory\(^a\), piecewise approximated as a cylinder\(^b\):
\[
\begin{align*}
\zeta_{\perp} &= \frac{8\pi}{\ln(L/d)-\frac{1}{2}+\ln(2)}, \\
\zeta_{\parallel} &= \frac{4\pi}{\ln(L/d)-\frac{3}{2}+\ln(2)}.
\end{align*}
\]

Local velocity \(u_x(s)\) depend on the hydrodynamic penetration\(^c\).

Local velocity $u(s)$ depend on the hydrodynamic penetration into the brush12:

Like Kim et al.13 we introduce an equation similar to the Brinkman equation14 for flow in porous media but depending on local density:

$$\frac{d^2 u}{dy^2} = \zeta \sigma \frac{u(y)}{\cos \theta(y)} \rightarrow \frac{d^2 u_x(s)}{ds^2} = \zeta(s) u_x(s) \frac{\sigma}{d^2} \cos \theta(s) - \frac{du_x(s)}{ds} \frac{d\theta(s)}{ds} \tan \theta(s),$$

with boundary conditions: $u(y)|_{y=0} = u(s)|_{s=0} = 0$, and $du/dy|_{y=L} = \dot{\gamma}_L$ resp. $du/ds|_{s=L} = \dot{\gamma}_L \sin \theta(L)$.

Discretise the beam: \(N = \lceil L/d \rceil \) spheres

Positions are given as a function of \(s \):

\[
x(s) = \int_0^s \sin \theta(s') \, ds' \quad \text{and} \quad y(s) = \int_0^s \cos \theta(s') \, ds'
\]

Assume a repulsive interaction:

\[
g_{ij} = \begin{cases} r_{ij} \leq d : & \epsilon_g \frac{k_B T}{d} \left[(d/r_{ij})^\alpha - 1 \right] \frac{r_{ij}}{r_{ij}} \\ r_{ij} > d : & 0 \end{cases}
\]

with \(\epsilon_g \gtrsim 50 \) and \(\alpha \geq 3 \).

Force density \(f^\nu_n \) on a sphere \(n \in [0...N-1] \) in a discretized beam:

\[
f^\nu_n = \sum_j \frac{g_{nj}}{d}
\]

\[
F^\nu(s) = f^\nu_{\lfloor s/d \rfloor} \left(d \left\lfloor s/d \right\rfloor - s/d \right) + \sum_{n=\lfloor s/d \rfloor}^{N-1} f^\nu_n \, d
\]
Theoretical Solution

Brinkman-like equation

\[
\frac{d^2 u_x(s)}{ds^2} = \zeta(s) u_x(s) \frac{\sigma}{d^2} \cos \theta(s) - \frac{du_x(s)}{ds} \frac{d\theta(s)}{ds} \tan \theta(s)
\]

Beam equation

\[
EI \frac{d^2 \theta(s)}{ds^2} = F_y(s) \sin \theta(s) - F_x(s) \cos \theta(s)
\]

Solver scheme:

0. guess a configuration: \(\theta_0(s) \) for \(s \in [0, L] \)
1. calculate volume exclusion force \(\rightarrow F^v(s) \)
2. solve Brinkman-like equation \(\rightarrow u(s) \Rightarrow F^d(s) \)
3. Beam equation & DuFort-Frankel scheme\(^\text{15}\) \(\rightarrow \theta_n(s) \)
4. if \(\int_0^L |\theta_n - \theta_{n-1}| \, ds > tol \) : goto ① else : found final configuration ;)

Comparison between SDPD simulation and our theoretical model: brush height

Figure: Relative brush height vs shear rate normalized by polymer elasticity
Results
SDPS vs theory

Comparison between SDPD simulation and our theoretical model: brush height

\[\text{overestimation of volume-exclusion term } F^v \leftarrow \text{neglected perturbation in } z \]
Results

error analysis

Figure: Relative deviation of brush height vs shear rate.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>106</td>
</tr>
<tr>
<td>RMS</td>
<td>14.6%</td>
</tr>
<tr>
<td>AAD</td>
<td>9.5%</td>
</tr>
<tr>
<td>Bias</td>
<td>8.3%</td>
</tr>
</tbody>
</table>
Prediction of the response to shear flow of dense polymer brushes.
Comparison between SDPD simulation and our theoretical model: velocity profile

Figure: normalized velocity profiles, $\partial P/\partial x = \text{const.}$
Results

theoretical model

Prediction of flow rates in channels or tubes.
Comparison between SDPD simulation and our theoretical model:

Relative apparent viscosity

Figure: Relative apparent viscosity vs shear rate scaled by elasticity.
Results
theoretical model

Prediction of app. viscosity as input for continuous methods.

\[\frac{\eta_{app}}{\eta_0} = f(\tilde{\gamma}/(l_p/L)) \]

- SDPD, \(l_p/L = 10 \)
- theory, \(l_p/L = 10 \)
- SDPD, \(l_p/L = 100 \)
- theory, \(l_p/L = 100 \)

microfluidic devices
Simulations of polymer brushes with
- densities varying between 0.01 (no interaction between polymers) and 1 (maximum density of SC packing),
- with elasticities in range of 2 orders of magnitude and
- under top shear loads in range of 6 orders of magnitude.

Simulations $h(\sigma, EI, \dot{\gamma})$ in good agreement with previous studies.

We propose the first theoretical model describing dense semi-flexible polymer brushes in a wide parameter range:
- Good agreement with simulations: $(\Delta h)_{\text{max}} \approx d$.
- Model reproduces all features shown in simulation.
- Systematic overestimation of height due to reduced dimensionality.

Now we can predict the interaction of a dense semi-flexible polymer brush with shear flow!

Outlook

Direct mechanical stress or deformation of the brush.

→ simulation of brush compression: preliminary results in good agreement with theoretical model

⇒ add viscoelasticity to vessel walls: model mechanical transduction of forces due to e.g. EGL–RBC interactions
D. A. Fedosov
co-author

Jülich Supercomputing Centre (JSC)

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung/Foundation
THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?